
Using Object Oriented languages for building Non-applications in MPW Page 1

Using Object Oriented Languages
for Building

Non-Applications
in MPW

by Allan Foster and David Newman

Over the past few years object oriented programming has been pushed as an appealing
approach for Macintosh programming projects. Unfortunately, the tools provided have only
allowed this to be used by Applications.

This paper shows a technique for using OOP languages for writing stand alone code for the
Mac OS. Examples of these are INITs, XCMDs and the various DefProcs for the Mac
managers.

This paper will show how to use Global variables in these code resources, as well as how to
provide the necessary framework for both C++ and Object Pascal to be used.

Using MPW as the development environment, it will be shown how a runtime library
combined with a post-link MPW tool are employed to build object oriented stand alone code.
Full support for Object Pascal and C++ are provided, including support for C++ static
constructors and destructors. It then demostrates how to build multi-segment code
resources, and where they would be used.

Using Object Oriented languages for building Non-applications in MPW Page 2
Introduction

There are essentially two types of executable code
written for the macintosh. The first, and most
visible, is the application. Most of the available
development environments provide very strong
support for building and debugging applications.

The second type of executable code that is written
for the macintosh, is the so called Stand Alone code.
Into this realm fall the neat hacks that we all know
and love! INITs, XCMDs, CDEVs and all the other
executable resources that the mac os uses in
support of the applications.

The THINK products have provided us with fairly
strong support for building these resources for some
time. However the development environment from
Apple, MPW, has provided only minimal support, and
placed some major restrictions on the developers of
these resources.

We will show you how, with a little extra support,
you can build the stand alone resources without
being limited by the restrictions currently placed on
developers.

In order to appreciate the problems that need to be
overcome, we need to have a clear understanding of
the different types of module references that are
generated by the compilers and linker.

Address References.

There are only two types of modules that the MPW
linker is capable of dealing with. The two types
being CODE, and DATA.

Each of these are able to reference the other.
Therefore, there are four different module
references that are possible.

Each of these have special needs that the linker
must satisfy in order for them to function properly.

Code to Code.

This type of reference comes in two distinct flavors.
The simple form of this reference is generated by a
function call to another function within the same
segment. In this case, the linker knows up front the
offset from the one routine to the other, and a simple
PC relative address is generated for the JSR.

eg: JSR *+350

A code to code reference that is across segments

creates a problem for the linker. The final location
of the segment being referenced is not known by the
linker. This information is only known at runtime.
and therefore can only be fully resolved at runtime,
when the segment is actually loaded.

For any reference to code in another segment, the
linker actually generates a reference to a special
data module called the jump table. The jump table
is nothing more than a special data module that
resides at a positive offset from A5.

First the linker creates an entry in the jump table for
the routine being referenced, which consists of a
little code that resolves the reference at runtime,
and then treats this reference as nothing more than
a Code to Data reference, and can easily be resolved
as explained in the next section.

eg: JSR 128(A5)

The second part, is the resolution of the actual jump
table entry itself. The only information that the
linker has, is the segment number, and the offset
into that segment being referenced. Since the linker
cannot resolve this reference any further, it just
gives up, and provides this information to the
runtime routine to actually resolve the reference.

At runtime, the final resolution of the references is
performed by the toolbox trap _LoadSeg. Since
_LoadSeg has the segment ID, the offset into that
segment, as well as the address of where the
segment has been loaded, it can easily resolve the
reference.

Code to Data.

This reference is generated whenever we have code
that references a global variable. Since MPW uses
Address Register A5 as the pointer to global space,
all data references are simply resolved to an offset
from A5. The address generated for the instruction
is a simple A5 indirect with displacement.

eg: PEA -1400(A5)

The only time that references from Data occur is
when there is initialized data containing references
to other data or code. This is common practice in C
programming, but not allowed by the pascal syntax.

Using Object Oriented languages for building Non-applications in MPW Page 3
Data to Data.

This type of reference is found when a variable in
global data space, is statically initialized to contain
the address of another variable. The syntax in C is
fairly clear.

eg: char Buffer[1024];
char *BufPtr = &Buffer;

Since the reference is a data reference, it is able to
be resolved to a simple offset from A5, exactly as in
the code to data reference above.

Data to Code.

This type of reference does not occur very
frequently, but is not uncommon in C. The following
C statements will produce a Data to Code reference.

eg: void function1();
void function2();

ProcPtr fTable[] =
{ &function1,

&function2
};

Here we have an array of pointers to functions,
which we have called fTable. The most common
occurence of this type of reference occurs in C++.
A C++ vTable is nothing more than a statically
initialized array of function pointers, similar to the
example above. The vTable is the C++ class method
dispatcher, and as such EVERY class in C++
requires a vTable.

The same problem presents itself here as was found
in the inter segment code to code references above.
Since the final location of the segments that contain
the functions being referenced is not known by the
linker, it needs to generate jump table entries for
the references.

These references then simply become Data to Data
references, which are resolved as described above,
and the jump table is again left for the runtime to
resolve.

Let us now investigate what effect this has on object
oriented languages under MPW.

Object Oriented Languages

There are two main object oriented languages
supported under MPW. These being C++ and
Object Pascal. There are others available, but these

two are by far the most common.

Fairly good descriptions of the implementations of
these languages may be found in several different
books dealing with the subject. Without going into
any detail about the implementations of each of
these languages, let us look at what support they
require from the runtime environment.

There is, however, one feature of C++ that does
present an interesting implementation problem. C+
+ provides for Constructors and Destructors in its
classes.

The designers of C++ realized that when a class is
instantiated, there is likely to be a need for
initialization, and a corresponding need for clean up
when the instance is disposed of. This initialization
would have to be done simply as a result of creating
an instance, not by any concious action by the
programmer.

The constructor is a method in a C++ class that is
automatically executed whenever an instance of the
class is created. The destructor is automatically
executed whenever the instance is disposed of.

The problem arises when there are global instances
of a class. The constructor needs to be executed
before the main code is run, and the destructor
needs to be run when the main code is finished
executing.

This presents another problem for the runtime
startup code, besides having to build the A5 world,
with all the statically initialized global variables, it
also needs to execute the constructors of any global
class instances.

Current Restrictions

MPW places one restriction on the devloper of stand
alone executable resources. This restriction leads to
several major limitations in what may be done in
stand alone executables, as well as in the tools
necessary to develop them.

Stand alone executables, may not have any DATA
modules or any references to DATA modules. From
the discussion above, the consequences are quite
severe, immediately presenting two major
limitations.

Using Object Oriented languages for building Non-applications in MPW Page 4

No Globals

In the discussion above, it was shown that global
variables are in fact data modules. Since stand
alone executable resources cannot have any data
modules, there can be no use of global variables.

The reason for this is actually pretty simple. Since
the MPW linker locates all data modules as offsets
off of A5, it assumes that there is an A5 world in
place at runtime to accomodate this data. Since
stand alone executables as produced by the MPW
linker do not have the startup code required to build
a valid A5 world, the MPW linker, does not allow
anything to be based off of A5.

Not being able to use global variables is a fairly
substantial limitation. Many developers have been
very thankful of the THINK products for removing
this limitation from their development system.

Aside from the inconvienience, this restriction has a
profound impact on using C++ as a development
language.

As can be seen from the discussion above, C++ uses
global variables for the vTables used as the method
dispatch mechanism. These vTables are statically
initialized global variables. Since stand alone
executables cannot contain or reference any data
modules, they cannot reference the C++ vTables,
and therefore cannot use C++.

No Jump Table

All address references have to be either PC-Relative,
or Absolute. Again, refering back to the discussion
about module references, not being able to have any
data references rules out the posibility of having a
jump table, since the jump table is in fact data
module.

It is immediately evident why there has been a long
standing belief in Mac development that stand alone
executable resources cannot be larger than 32K.
Since the 68000 can only do PC-Relative addressing
using a word sized offset, the largest branch that
may be taken is 32K in either direction. Using a
jump table, and multiple segments would relieve this
restriction, but then that would require Data
references.

A Mac application is able to use multiple segments,
and in this way it is able to circumvent the 32K size
restriction. But this requires the use of a valid A5
world.

Not being able to use a jump table makes it is very
difficult to write a multi segment stand alone
executable. In a normal application, the linker takes
care of all of the bookkeeping and ensures that the
jump table is maintained correctly. In order to do
this in stand alone executable code, the programmer
has to assume the responsibility and bookkeeping
chores. This is a tedious, and very error prone task.,
and is not something that the programmer should
have to be concerned with.

Obviously, then, if any serious work is going to be
done with object oriented languages in stand alone
executables, these restrictions are clearly
unacceptable, and need to be removed.

Removing the restrictions

Now that we have investigated the restrictions
placed upon us, as well as the implied limitations ,
we can go ahead and remove them.

Providing Global Variables

From the discussion above, it can be seen that the
MPW compilers and linker locates all data modules
variables as offsets from A5. This means that global
variables are located at negative offsets from
register A5.

It is immediately obvious where the 32K limit on
global variables comes from. Since the linker
generates register reslative addressing modes to
access global variables, this limits the range to 16
bits, or 32K on either side of the location pointed to
by the register.

There is no problem convincing the compilers and
linker to generate code that references the data
modules relative to A5, as long as there is provision
made to build an A5 world for the code when it
executes. This is done by providing some runtime
startup code. This startup routine has to allocate
space for the globals, and set A5 to point into it.

This is all explained in tech note 256, which along
with providing the necessary information on what to
do, also provides sample code that does it.

The MPW linker emits two functions for dealing with
building the A5 world. Pascal conventions demand

Using Object Oriented languages for building Non-applications in MPW Page 5
that all function and procedure names be converted
to upper case, so these routines are not callable
from Pascal, since their names are in mixed case.
Here are the C prototypes.

short A5Size();
void A5Init(long A5Ptr);

These two functions are in fact very simple. The
first function, A5Size, simply returns the size of the
global space. Since this is a C calling convention,
the result is returned in register D0. The second
function, A5Init, performs the static initialization of
any pre-initialized global variables. By making these
functions accessable to us, the linker has in fact
provided everything needed to build and initialize an
A5 world for our stand alone code.

By including the techniques from the tech note into
the SARuntime, the limitation of not being able to
use global variables disappears.

Providing a Jump Table

Since the previous section has already provided the
stand alone code with a valid A5 world, we should
be able to use it for a jump table as well.

Getting the MPW linker to actually generate a jump
table for stand alone code is a lot more difficult. The
MPW linker will only generate a jump table if it is
building an application. Therefore we cannot link
the code as a stand alone resource, and have a jump
table generated.

Before we can continue, we need alittle background
on how the jump table works for standard mac
applications.

Not every routine in an application requires a jump
table entry. The are only two different situations
where a jump table entry is required.

Any routine that is called from a segment other than
the one it resides in requires an entry.

Any routine whose address is taken for an indirect
call requires a jump table entry. These could be
indirect calls from the code itself, of more commonly,
procedures passed as callback functions to toolbox
routines.

A routine that is only called from within the segment
is resides in, does NOT require an entry, since the
call may be made with a PC-Relative offset, and this
can be calculated by the linker when the application
is linked.

Entries in the jump table may be in one of two
states. The segment may be either Loaded, or
Unloaded. See figure 1 for the differences in the
tables.

$0000
(1 word)

(jump to routine’s address)

(3 words)

main or single segment entry

Jmp $xxxxxxxx

(branch subroutine to jumptable
entry for SALoadSeg)

(2 words)

Segment Number
(1 word)

BSR +$xxxx(A5);SALoadSeg

Offset of routine from start of
segment
(1 word)

non-main, multi-segment entry

Figure 1

To enable us to use the jump table created for
applications, we need to slightly modify the way it
works.

In an application, a jump table entry that is in the
loaded state has a very simple format. it is simply a
jump instruction to the absolute address of the
routine in the code segment. Since the segment
cannot move, once it is loaded, it will not change.
This is true for our Stand alone executables as well,
so this format does not present a problem. We will
see that in the

Using Object Oriented languages for building Non-applications in MPW Page 6
stand alone executables, this case only occurs for
the main segment.

The jump table entry for an unloaded segment is a
little more difficult to deal with. A normal jump table
for an application uses the _LoadSeg trap to load the
segments as needed. The stand alone code cannot
use _LoadSeg, since it is designed specifically for
applications.

The stand alone code needs to provide an alternative
to the _LoadSeg trap, without altering the structure
of the jump table. We do this in the runtime library
with the SALoadSeg routine. In order to keep the
same structure in the jump table, the entries are
built as shown in figure 2.

Instead on putting the trap word for LoadSeg into
the jump table entry, we replace it with a BSR to the
Jump table entry for our own SALoadSeg routine.
The reason for a BSR instead of a branch will
become clear shortly.

By providing a replacement loadseg, we can provide
multiple segments to stand alone executable
resources, without the developer having to do any
extra work.

Obviously then, we need some way to convert the
application into the stand alone executable we are
trying to build. This is by the post-link tool, MakeSA

MakeSA not only creates a jump table for our stand
alone resource, but also generates the tables needed
by the startup code for constructors, destructors,
aas well as the modified segment loader.

We will go into the details of how MakeSA works in
the next section.

(move segNum onto stack for LoadSeg)

(2 words)

_LoadSeg
(1 word)

Move.w #segNum,-(A7)

Offset of routine from start of segment
(1 word)

Segment Number
(1 word)

(jump to address of this routine)

(3 words)

Jump $xxxxxxxx

“loaded” state

“unloaded” state

Figure 2.

The major restriction that MPW places on
developers of stand alone code resources, that of not
being able to use DATA modules, has been removed.
There is now, only one more implementation detail
that needs to be dealt with in order to use object
oriented languages in the resources.

C++ Constructors and Destructors

C++ has a few special features that need to be
addressed. This is the handling of the static
contructors and destructors.

First a quick explanation of these unique beasts!

C++ provides two methods for classes that make
the initializing and disposing of the classes much
easier to maintain. This is the contructor, and its
associated destructor.

Using Object Oriented languages for building Non-applications in MPW Page 7
In the following code example, the very act of
defining the local variable theClass to be of type
TObj, will cause the constructor for TObj to be
invoked, and the destructor to be called when the
function exits.

void example()
{

TObj theClass;

theClass.doit();

};

To provide a similar functionality in C, one would
need to write the following code:

void example()
{

TObj theClass;

INITTObj(theClass);

theClass.doit();

DisposeObj(theClass);
};

The benefits of using constructors and destructors in
C++ is pointed out in many of the books written
about C++. . It is in fact one of the advantages of
using C++..

The problem comes in with global declarations of
objects. Since it is a global, it conceptually exists
when the code starts executing, but the constructor
still needs to be executed. In an application, the
runtime startup code is responsible for executing
the constructors, and making sure that they are
executed in the correct order. The problem for
stand alone resource, is in making sure that the
constructor gets called before the main function
begins executing, as well as making sure that the
constructors are called in the right order!

In a normal application, the MPW linker generated a
special code segment that is called
"%_Static_Constructors_Destructor_Pointers". This
is nothing more than a table of offsets into the jump
table of the constructor functions that need to be
executed, along with the associated destructor
functions that will be executed when the application
quits.

MakeSA works with this segment, and builds a table
that is used by the runtime startup. The constructor
functions are then executed before passing control

to the main function in the stand alone resource.
The destructor functions are not executed until the
stand alone executable terminates.

Making it transparent

Our final goal was to make the library as
transparent as possible. We did not want to have to
force developers to call a function to setup the A5
world, or perform any other housekeeping. We
achieved this by providing our own runtime with its
own entry point, that does everything necessary
before executing the actual stand alone code.

All parameters are left undisturbed on the stack, so
the main function is declared exactly as required by
the calling code, and is invoked with the correct
parameters on the stack.

Therefore, the developer need not make special calls
to setup the runtime environment, nor to tear it
down. We did provide special routines for the
developer to call should they want to exit the stand
alone temporarily. Typically, for a callback into the
parent application. These routines are similiar to
SetupA5 and RestoreA5 in the MPW libraries. These
will allow the standalone to call outside of the
standalone's A5 environment, and restore that
environment upon returning.

We also have provided the full source code for both
the tool and the library, so any special handling can
be dealt with by the developer if necessary.

Implementation details.

The runtime routines provided are responsible for
the setup and tear down of the execution
environment. Appendix A provides a step by step
explanation of how the runtime provides this
support, but there are a few areas that should be
explained.

Several technical problems needed to be solved
before this runtime could be implemented. They
were:

1 Building a jump table with the entries having
the same size as the entries in a standard
application jump table.
2 Managing segments without dealing with self
modifying code.
3. Managing the constructors and destructors.

Using Object Oriented languages for building Non-applications in MPW Page 8
4. Ensuring that the runtime was called at the
end of execution, without disturbing the parameters
on the stack that need to be passed on to main.

Finding a new jump table format

Standard jump table entries are 8 bytes in size, and
since the linker builds the jumps into the jump table
with this assumption, we could not change the size
of the entries.

For a single segment resource, the jump table was
not a problem, since we could just build it with the
same format as a loaded segment in a standard jump
table. The startup code knows where the executable
resource is loaded into memory, and that that
address is not going to change, so the runtime can
fill the jump table entries with absolute jumps to the
correct routines.

A problem presents itself when trying to deal with
multiple segments. Since we cannot use the
_LoadSeg trap, since it is already in use by the
running application, we had to come up with
another method of loading segments.

In order to load a segment and jump to the required
routine, we need two peices of information. We
need to know the resource ID of the segment we are
going to load, and we need to know the offset into
that segment that the routine we need resides. Both
of these values are word sized, and as such consume
4 bytes of the 8 alloted to a jump table entry. This
leaves 4 bytes into which executable code needs to
be placed in order to load the segment.

The solution to this problem is to do a BSR to the
jump table entry for the SALoadSeg routine in the
runtime library, and since that routine is in the main
segment, its jump table entry will simply contain the
absolute jump to the right address.

The reason that a Branch Subroutine was used here
instead of a Branch, is actually fairly simple. The
SALoadSeg function needs a pointer to the jump
table entry so that the segment number and offset
can be fetched. The return address on the stack, left
by the BSR, points right back into the correct jump
table entry This value is popped off the stack, and
used to get the required segment ID, and offset.

Any inter segment jump always executes the
SALoadSeg function. The disadvantage of this is
that inter segment jumps have a little more
overhead in their execution. There are a few
advantages of this technique, not the least of which,
is the absence of self modifying code.

Loading and Unloading of segments.

Since our SALoadSeg routine is going to be
executed on every inter segment jump, it needs to
be fairly quick.

In order to manage segments, we have an array of
segment handles, that are intially set to nil. When
we are called upon to load a segment, we get the
segment ID, and use it as an index into this table. If
the resulting entry is not nil, then the segment is
already loaded, and we have its handle, so we can
just jump into the correct routine.

If the handle is nil, then we call getResource to load
the segment, and store its handle into the array, so
future calls will find it already loaded!

SAUnloadseg simply does a releaseResource on the
handle, and sets its entry to nil, so the same
precautions need to be made with this routine as
with the _UnloadSeg trap. Do NOT unload a
segment that is in the calling chain.

This design of the jump table can lead to at least two
interesting areas of exploration. The first would be
the to have the unloading of segments done
automatically when they are no longer needed. This
becomes possible, since every inter-segment jump
has to go through the SALoadseg function, and as
such, reference counting could be done on loaded
segments.

The second interesting area, would be to allow
segments to be unloaded even if they are in the
calling chain. This is possible, again because all
inter-segment jumps have to go through the
SALoadSeg function. Keeping track of the segment
and offset the the call is coming from, and restoring
the return address when it returns, if the segment
has moved.

Constructors and Destructors.

We build a table for the constructors and destructors
at the head of our resource. These tables consist of
nothing more than offsets into the jump table of
routines that need to be called.

Before calling the main function of the stand alone
code, we walk this list and execute the required
routines.

Using Object Oriented languages for building Non-applications in MPW Page 9
The destructors are dealt with in the same manner.
MakeSA is responsible for making sure that the
destructors are called in the reverse order of the
constructors , as required by C++.

Regaining control after execution

We needed the runtime to regain control after
execution of the stand alone code, but since we do
not know the number of type of the parameters
passed, we cannot simply JSR to the main function.
This is because the JSR would leave an extra
address on the stack, and therefore mess up the
parameters to the main routine.

Instead, the runtime startup saves off the return
address into a global variable, and pushes the
address of our Runtime cleanup routine onto the
stack in its place. Since there is now a return
address on the stack, the runtime can simply jump
to the main function. When the main function
returns, it will return to our cleanup routine, which
can then go ahead and call the destructors, dispose
of the A5 world, and return to the original caller.

If the actual return address is needed, it is readily
available in the global variable that it was saved
into.

How It Works

Now that we have discussed how it can all be done,
and we know the problems that have been solved,
we can discuss the implementation that we have
provided.

This is done in two parts. The first will explain the
runtime support routines, and the second part will
discuss the MPW tool, MakeSA, that performs the
post link phase of the build.

Building the Table.

MakeSA builds the table in Figure 3 and puts it at
the begining of the executable resource.

Since all executable resources are called with the
entrypoint at offset 0, the is a BSR at this point to
get to our runtime support. As before is a BSR and
not a BRA, since we are going to need a pointer to
the begining of the resource, and pulling it from the
stack was as convienient method as any.

Following the BSR are the tables that are generated
by MakeSA. Each table is used by the runtime
support to build the execution environment.

The first section of the runtime code walks the
tables, and stores off pointers to the various tables
in local vars.

The runtime then executes a JSR to A5Size to get
the size of the global space the executable is
expecting. Remember that the routine returns its
result in D0.

The size of the handle we need to allocate is
calculated by the following formula:

(# JT_Entries * 8) + 32 + GlobSize

This value is passed to _NewHandle to actually
allocate the space, along with all the associated
housekeeping.

A5 needs to be set to the transition point between
the globals and the jump table, so the global size is
added to the pointer we just allocated, and the
result is move into A5. The first peice of building
our own A5 world is now completed.

The global space now has to be initialized, which is
done by the linker generated function A5Init.

Using Object Oriented languages for building Non-applications in MPW Page 10
Since we now have a global world, the runtime has
decalred a few globals of its own. The original value
of A5 needs to be stored, so that it can be restored
when the stand alone code has completed executing.
This original value of A5 is saved off into
SAOldA5(A5)

Three more global variables need to be used by the
runtime code, and they are initialized here.

SAGlobHDL contains the handle that was allocated
for the A5 world. This needs to be saved, since the
runtime needs to dispose of it later, when the stand
alone terminates.

SASegType is a variable of type OSType, that
contains the four character ID that is the type of any
multi segment resources.

SADtorPtr contains a pointer to the table of
Destructors that need to be called when the stand
alone code has finished executing.

SASegPtr contains a pointer to the array of segment
handles, so that multiple segments may be loaded
automatically.

The next step walks the table of jump table entries
in the header, and builds the appropriate entries in
the newly constructed A5 world.

This is simply a loop that takes the segment ID, and
the offset for each routine, and builds the correct
entry for it.

After this, we loop through the constructor table,
and execute all of the constructors.

Finally, we save the return address into SARetAddr,
and push the address of StopRunTime, and then
jump to the main function of the stand alone code.

The rest of the routines in the runtime are fairly self
explanatory.

BSR $xxxx (2 words)
Segment Resource Type (2 words)

Count of Code Jumptable Entries (2words)
Code Jumptable Entries

Entry = offset (1 word) + segment (1 word)

(total of 2 words each entry)

Count of Constructor Offset Table Entries (2words)

Constructor Offsets (1 word each)

Count of Destructor Offset Table Entries (2words)

Destructor Offsets (1 word each)

Count of Segment Table Entries (2words)

Segment Entries (2 words each)

Main Code Segment

Figure 3

